RAIL-HIGHWAY CROSSING WARNING DEVICE LIFE CYCLE COST ANALYSIS

Jennifer Heisler Joseph Morrissey
INPUT OUTPUT COMPUTER SERVICES, INC. 400 Totten Pond Road Waltham, Massachusetts 02154

SEPTEMBER 1980
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPAINGFIELD, VIRGINIA 22161

```
            Prepared for
U.S, DEPARTMENT OF TRANSPORTATION
        FEDERAL RAILROAD ADMINISTRATIOM
            Office of Safety
        Federal Highway Administration
            Office of Research
            washington, DC }2059
```

 REPRODUCED BY
 U.S. DEPARTMENT OF COMMERCE
 NATIONAL TECHNICAL
 information service
 SPRINGFIELD, VA 22161

nOtice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

PREFACE

This study of the life cycle costs of rail-highway crossing warning devices is part of an overall rail-highway crossing safety program being conducted by the U.S. Department of Transportation. The results of this analysis will be used to support a resource allocation model being developed by the Transportation Systems Center (TSC) to improve the allocation by states and railroads of funds for improving rail-highway crossings.

This report documents the findings of Input Output Computer Services (IOCS) under Contract Number DOT-TSC-l533 to the Operations and Management Systems Branch, Intercity Systems Division, Office of Ground Systems at TSC. Dr. Edwin Farr was the contract technical monitor at TSC. Under the initial direction of John M. Witten at IOCS, the research for the project was performed by Joseph Morrissey and Jennifer Heisler. Charles Erdrich served as a technical consultant for the study. Samir A. Desai, Vice President of the Systems Research and Communications Division, offered technical and managerial assistance.

This study required the contributions of many people in the railroad industry, various state governments, and equipment manufacturers, although responsibility for the accuracy of the report rests with the authors. The following organizations and individuals provided assistance and important documentation:

Association of American Railroads	Robert B. Stout, P.H. Foley
Burlington Northern	R.F. Garland
Chicago and Northwestern	J.B. Ragsdale
Conrail	Robert Cotter

Maine Central	J.O. Born
Missouri Pacific	Thomas Bryant
Seaboard Coast Line	T.B. Hutcheson
Southern Pacific	H.B. Berkshire
California Department of Transportation	D.R. Higgins
Kentucky DOT	James Fehr Thomas Roberts
Louisiana Department of Transportation and Development	Turner Lux
Massachusetts Department of	Charles Sterling
Public Works	Andrew O'Brien
Mississippi State Highway	L.T. Livingston
Department	R. Nelson Sellers Bennie Holmes
Missouri State Highway	R.N. Hunter
Commission	Wayne Muri
Federal Railroad Administration	Dr. Richard Snow Bruce George
	Rohini Shah
Federal Highway Administration	Dr. Gerald R. Stewart Lucien Bolon
Safetran Systems Corporation	Robert Wyland
Harmon Industries Incorporated	Vince Burgett
Union Switch \& Signal Division of Westinghouse Air Brake Company	Robert Karow
Goodyear Tire \& Rubber Company	W.J. Sheeler
Fel Pro Products Manufacturing Company	Jack Brady
Structural Rubber Products	Jack Witlock
The authors are indebted to Dr. Ed ombre, Chief - Operations and Manag effective direction and participa	Farr and Mr. Robert ent Systems Branch, for n in the project.

table of contents
Page

1. INTRODUC'TION 1
1.1 Background 1
1.2 Purpose and Objectives 2
1.3 Study Approach 3
2. COST DATA COLLECTION 5
2.1 Data Requirements 5
2.2 Data Sources 7
2.2.1 Identification of Sources 7
2.2.2 Selection of Sources 7
2.3. Data Received 9
2.3.1 Description of Data Received 9
2.3.2 Summary of Usable Installation Cost Data 12
2.3.3 Maintenance Cost Data 12
3. COST FINDINGS 16
3.1 Life Cycle Cost Procedure 16
3.2 National Life-Cycle Costs 17
3.2.1 Installation Cost Components 18
3.2.2 Installation Cost Confidence Intervals 21
3.2.3 Factors Influencing Installation Costs 24
3.2.4 Maintenance Costs 32
3.3 Regional Cost Findings 32
3.4 Passive Warning Devices 35
3.5 Rubberized Crossing Surfaces 35
APPENDIX A SAMPLE LETTERS TO STATES AND RAILROADS 39
APPENDIX B EXAMPLE OF A COST BILLING 47
APPENDIX C REGIONAL COST FINDINGS 63
APPENDIX D CONFIDENCE INTERVAL COMPUTATION 67
APPENDIX E BIBLIOGRAPHY 73
APPENDIX F REPORT OF NEW TECHNOLOGY 77

LIST OF FIGURES

Figure Page
2-1 MAP OF FEDERAL RAILROAD ADMINISTRATION REGIONS 8
3-1 TREE DIAGRAM OF FACTORS INFLUENCING LIFE CYCLE CosTS 25
-

LIST OF TABLES


```
LIST OF TABLES (Cont.)
```

Table Page
3-13 AVERAGE INSTALLATION COSTS FOR MOTORIST WARNING DEVICES BY TRAIN DETECTION SYSTEM AND NUMBER OF TRACKS 31
3-14 AVERAGE ANNUAL AND 30-YEAR LIFE CYCLE MAINTENANCE COSTS BY DATA SOURCE AND MOTORIST WARNING DEVICE 33
3-15 LIFE CYCLE MAINTENANCE COSTS AS A PERCENTAGE OF MOTORIST WARNING DEVICE COSTS 34
3-16 MATERIAL COST PER TRACK FOOT FOR RUBBERIZED CROSSING SURFACES 37
3-17 SUMMARY OF RUBBERIZED CROSSING SURFACE COST DATA 38

The Highway Safety Acts of 1973 and 1976 and the Surface Transportation Assistance Act of 1978 provide funding authorizations to individual states to improve safety at public railhighway crossings. Safety improvements frequently consist of the installation of motorist warning devices such as crossbucks, flashing lights or flashing lights with gates. In support of these safety efforts, several projects have been undertaken by the U.S. Department of Transportation (DOT) and the Transportation Systems Center (TSC) to assist states and railroads in determining the most effective allocation of federal funds for rail-highway crossing warning devices. One of these projects concerns the development of a resource allocation model that determines how to achieve maximum safety benefits for the expenditure of a given level of funding. This computer model utilizes rail-highway crossing hazard index ratings and the effectiveness and costs of motorist warning devices as inputs. The purpose of this study is to provide life cycle cost data for active rail-highway crossing warning devices in support of the DOT-TSC resource allocation model. Life cycle costs consist of the initial costs, such as purchase and installation, and the recurring or maintenance costs.

The study included active rail-highway crossing warning systems, crossbucks, and surfaces. The costs of adding additional active warning devices to a crossing with an existing active warning system are also examined. The study includes an analysis of regional cost variability by Federal Railroad Administration (FRA) region and an analysis of the factors influencing life cycle costs. All costs are presented in 1977 dollars.

Life cycle installation costs and maintenance costs were determined for each of the active motorist warning devices, as shown in Table A.

TABLE A. INSTALLATION, MAINTENANCE, AND TOTAL LIFE CYCLE COSTS FOR MOTORIST WARNING DEVICES (IN \$K)

MOTORIST WARNING DEVICE		

As Table A demonstrates; 30-year maintenance costs discounted to present value comprised 54 percent to 61 percent of the total installation costs; maintenance costs as a percentage of inștallation costs increased with the complexity of the motorist warning device.

Table B presents the breakdown of total installation costs into their cost components for the motorist warning devices investigated.
$\begin{array}{ll}\text { TABLE B. } & \text { AVERAGE INSTALLATION COSTS BY MOTORIST WARNING } \\ & \text { DEVICE AND COST COMPONENTS (IN } \$ \mathrm{~K} \text {) }\end{array}$

MOTORIST WARNING DEVICE	$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { PRE- } \\ & \text { ENGI- } \\ & \text { NEERING } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { LABOR } \\ & \text { COST } \end{aligned}$	MATERIAL COST	EQUIPMENT cost	MIS-CELLANEOUS costs
Flashing lights	26.0	1.4	7.2	13.8	0.8	2.8
Cantilevered flashing lights	29.4	1.2	7.9	17.7	1.1	1.5
Flashing lights with gates	39.2	1.2	9.7	25.0	1.2	2.1
Cantilevered flashing lights with gates	44.6	1.4	10.3	29.4	1.5	2.0
Flashing lights upgraded to flashing lights with gates	33.5	0.7	8.6	21.4	1.4	1.4
Flashing lights upgraded to cantilevered flashing lights with gates	42.7	1.1	9.9	27.6	1.9	2.2

The data were analyzed to determine factors influencing life cycle costs. The following trends were identified:

Region - No consistent regional cost trends were identified for the life cycle costs of motorist warning devices. This finding was attributed to internal railroad policies regarding the type of labor and/or equipment used, and to the fact that railroads cross regional boundaries and costs appeared to vary more by railroad than by region. Additionally, the regional samples offered a wide variety of projects with different operating and locational
characteristics, such as the number of tracks and the type of existing track circuitry. The costs appeared to vary by these characteristics more than by region.

Location - Costs for rural installations were slightly higher than for urban ones. When the data were further subdivided by the number of tracks and the location of the crossing, the opposite cost trend was found. In both cases, the differences among average installation costs were small.

Number of tracks - Average costs increased as the number of tracks increased at a crossing, although the additional cost per track was dependent upon other factors as well. These include train detection type and existing track circuitry.

Existence of track circuitry - The data available were insufficient to perform a statistically meaningful analysis of this factor.

Track work - The electrical and communications work necessary to install or modify the track circuitry for the train detection system contributed between 8 percent and 12 percent of the signal labor costs, and between 2 percent and 5 percent of the material costs.

Train detection system - A hierarchy of train detection systems was established with respect to costs, not complexity. The hierarchy is as follows from least to most expensive: motion sensors (MS), alternating/direct current (AC-DC) track circuits, audio frequency overlay (AFO), and grade crossing predictors (GCP).

1.1 BACKGROUND

This report documents a study to provide information for the U.S. Department of Transportation (DOT) to aid in improving the allocation by states and railroads of Federal funds for rail-highway crossing safety.

The Highway Safety Acts of 1973 and 1976 and the Surface Transportation Assistance Act of 1978 provide for funding to improve safety at public rail-highway crossings. In support of this program, several projects have been undertaken by DOT. First, an inventory of all rail-highway crossings was prepared by DOT and the Association of American Railroads (AAR). The inventory contains identifying and descriptive information on approximately 217,000 public at-grade crossings. The second part of the program is the development of procedures for the efficient allocation of funds for the installation of motorist warning devices. To this end, two computer models have been constructed by the Transportation Systems Center (TSC). The first computer model is a hazard prediction model. ${ }^{l}$ This model is derived from the physical and operating characteristics of the crossings in the DOT-AAR Crossing Inventory and from actual accident data in the crossing accident history files. The hazard model determines a hazard index for each crossing which is equal to the number of expected accidents per year at the crossing; it then ranks the crossings according to their hazard index. The second model is a resource allocation model. This model uses the hazard index and the effectiveness and costs of motorist warning devices to calculate accident reduction benefit/cost ratios for each crossing. The objective of the model is to maximize the total safety benefit achieved in reduced accidents for the expenditure of a given sum of money.

[^0]The purpose of this study is to provide life cycle cost data in support of the resource allocation model on rail-highway crossing warning systems and surfaces. The specific objectives of this study are listed below.

1. Determine the life cycle costs of rail-highway crossing warning devices including the documentation of the following cost components: engineering, installation, equipment, and maintenance for the first year and all other years.
2. Determine the life cycle cost variation for three general warning devices: crossbucks, all flashing lights, and all flashing lights with gates.
3. Determine the costs of upgrading existing motorist warning devices with additional warning devices. For the purposes of this study, an upgraded crossing refers to one in which an active warning device has been augmented with additional warning devices. Active warning refers to warning devices which are train-activated, such as flashing lights or gates. Passive warning refers to nonactive equipment such as crossbucks or stop signs.
4. Determine equipment scrap value and finance charges.
5. Determine regional cost variations for the various warning devices for each of the five Federal Railroad Administration (FRA) regions. ${ }^{l}$

[^1]6. Determine and identify the factors influencing life cycle cost variations and the extent of cost variability. These factors might include the number of tracks, the location of the crossing, or the different labor costs among railroads.
7. Determine the costs to install and maintain rubberized crossing surfaces.

1.3 STUDY APPROACH

The study approach was to define and describe the components of rail-nighway crossing warning devices, and collect nistorical cost data on the installation and maintenance of these devices. The cost data were analyzed with respect to variability and the sources of cost variability were determined.

The initial literature search provided information on the types of rail-highway crossing warning devices, their subsystems and subsystem components. ${ }^{l}$ Based on this research, the two basic active motorist warning devices, flashing lights and fiashing lights with gates, were divided into two categories: cantilevered and post-mounted flashing light installations. Tnis was done to further isolate the factors influencing life cycle costs.

To obtain the necessary cost information and ensure that adequate regional sample sizes would be provided for the different types of motorist warning devices, potential sources of cost data were identified and contacted. Under the Federally funded crossing safety program, railroads installing rail-highway crossing motorist warning devices submit detailed final billings

[^2]to the states. These final billings, available from both the railroads and the states, were found to be the most complete data available on the installation costs of rail-highway crossing warning devices. Maintenance cost data were compiled from a variety of sources including railroads, states, and railroad associations. Additional information required to analyze cost variability and determine the factors influencing life cycle costs was obtained through the DOT-AAR crossing Inventory maintained by FRA.

Installation costs were determined by project totals and by project subcategories of preliminary engineering, signal labor, material and material handling, and equipment rental. Maintenance costs were discounted to present value using a lo percent discount rate over a $30-y e a r$ service life. All costs were indexed to 1977 dollars using the AAR Quarterly Railroad Material Prices and Wages Index. ${ }^{2}$ cost variability by factors influencing life cycle costs was examined by controlling variables such as crossing location, the number of tracks, the type of train detection subsystem, and combinations of these factors. A national pooled sample of the cost data was used to determine the factors influencing life cycle costs. This was done to ensure adequate sample sizes because there are a multitude of factors influencing life cycle costs which appear in unique combinations at the various crossings.

[^3]
2. COST DATA COLLECTION

2.1 DATA REQUIREMENTS

In order to apply the concepts of life cycle costing to rail-nighway crossing warning devices and analyze the variability in costs, it was necessary to collect a wide spectrum of cost data. The requirements can best be described by considering costs and cost variability in several categories.

Cost Elements

Initial or one-time costs - For the purpose of requesting data, initial project costs consisted of the engineering, procurement, and labor costs which were expended for the installation of the devices.

Maintenance and other recurring costs - These costs included preventive and corrective maintenance over the project life, inventory needs and labor costs. For the purposes of this study, maintenance costs were defined as the average annual cost of labor and materials for maintaining a rail-highway crossing warning device. Operating costs such as electrical power are not included in maintenance costs due to the fact that the operating costs of motorist warning devices were not available in the final billings reviewed. Other recurring costs not directly associated with the installation or maintenance of warning devices, such as train delay costs, are also not included.

Other life cycle cost elements - A complete analysis of life cycle costs required information on the salvage value of warning devices, equipment life, cost of capital, and price and wage indicators.

Motorist warning devices - Listed in order of increasing complexity, cost data were required for flashing light, cantilevered flashing light, flashing light with automatic gate, and cantilevered flashing light with automatic gate installations.

Train detection systems - These included direct current (DC), alternating/direct current (AC-DC), grade crossing predictors (GCP), audio frequency overlay (AFO), and motion sensors (MS).

Passive systems - Data for the costs of crossbucks were also needed.

Regional Differences

It was expected that rail-highway crossing device costs. would vary across FRA regions: Contributing factors included wages and material, differences ị shipping and material handling costs, and individuail railroad operating practices.

Types of Installations

Other factors contributing to differences in cost were whether a particular installation was new or an upgrading of crossing warning devices was necessary, whether there were exịting track circuits, and whether surface work was needed.

Crossing Characteristics

Physical characteristics of the crossing, such as the number of tracks and highway lanes, were seen as possible factors ị cost differences.

The location of the crossing, urban or rural, was used in analyzing cost variations.

2.2.1 Identification of Sources

Several potential sources of cost data were identified early in the project. These included railroads, state agencies administering rail-highway crossing safety programs, other government agencies such as FRA and the Federal Highway Administration (FHWA), equipment suppliers, and railroad associations. Several suppliers provided valuable information and diagrams related to the components of crossing devices. The AAR supplied an important letter of introduction to railroads which is contained in Appendix A.

For each crossing project funded by a particular state, the railroad owning that crossing submitted a detailed cost estimate to the state administering agency, usually the highway department, public utilities commission, or department of transportation. After negotiation, this estimate was revised, the actual construction was performed, and final audited billings were received by the state. It was anticipated that these final billings would provide detailed cost data on engineering, procurement, and labor, as well as a description of previous equipment and crossing characteristics. The billings from both states and railroads were the only source which provided the level of detail required by this analysis.

2.2.2 Selection of Sources

Sources of cost data were selected mainly on the basis of coverage of the five FRA regions. Other factors, such as willingness to comply with request for data, were also considered. See Figure 2-1 for a map of the five FRA regions. In each region, one or more states and three or more Class I railroads were chosen.

[^4]Other required data, such as price and wage indicators, were available from the Bureau of Labor Statistics and the AAR's Economics and Finance Department. In addition to the initial system costs, railroads were asked to provide detailed maintenance cost data for various types of crossings and installations.

After initial telephone contact was made with all sources to determine the general context and quantity of data which they could provide, letters were sent which outlined data requirements. Examples of these letters outlining data requests to the railroads are contained in Appendix A.

2.3 DATA RECEIVED

2.3.1 Description of Data Received

The billings supplied by the states and railroads detailed the initial costs of a project in nine categories.

Pre-engineering - labor and overhead to perform engineering and planning tasks (drafting, etc.)

Signal labor - by type (signal, repair, track work, and communications) and overhead

Personnel expenses - lodging, meals, and other minor expenses, if necessary

Materials - detailed listing of system components

Material handling - taxes and freight

Equipment - leased and rented machinery for performing signal and track work

Salvage - credit for equipment that was reusable by the railroads

Accounting and billing

Miscellaneous - other personal expenses, gasoline, securing permits, and other minor expenses

A cover sheet was provided. This included a general description of the work, a crossing location identifier, the name of the owning railroad, the Federal and local share of funding, and the estimated and final audited total project cost.

The format of the billings was similar for each state or railroad. It became evident that the original breakdown of initial life cycle costs by engineering, procurement, and labor was insufficient to show significant cost variations. The original categories were then expanded to pre-engineering, labor, materials (including material handing), equipment rental, and maintenance. Accounting and billing was omitted since it proved to be a small percentage of total cost, less than one percent. Miscellaneous and personal expenses were also considered negligible and were subsumed in other categories. Representative examples of the cost billings are contained in Appendix B.

Although the individual project billings were excellent sources of life cycle cost information, a number of difficulties were experienced in their use. These problems were classified in the following areas.

Cost data dealing exclusively with the installation of passive devices were only available from Kentucky. This limited the cost analysis of passive devices.

Many of the labor costs tabulated on the billings were shared costs. That is, if a combination of signal and surface work was included in a project, it was difficult to separate which components of labor were attributable to track, surface, or signal work. Additionally, in most cases it was not possible to determine to what type of work certain contracted labor expenses should be applied.

In many projects, a mixture of devices was installed at a crossing. This made it difficult to categorize a particular installation according to a specific type of motorist warning device or train detection system. In many cases, the type of train detection system was not specified. This required detailed review of the parts listing in order to make an accurate determination. It was difficult to separate the exact material comprising the train detection system. This was due primarily to the variety of materials used to install and/or modify the system and connect the device to the existing track circuitry. Since the detailed material lists found in the billings did not distinguish between signal and train detection system materials, it was not possible to itemize these costs separately. However, it was possible to distinguish costs for particular motorist warning devices by the type of train detection system.

Information specifically allocated to control logic and interconnection subsystems was not available.

Most projects did not include sufficient data describing the physical attributes of the crossing nor the DOT-AAR crossing number. Additional contacts were necessary to obtain the information on physical characteristics. For projects which were upgrading previous equipment, the type of equipment replaced was frequently not specified. This data problem was resolved by obtaining DOT-AAR crossing numbers for the final billing. The DOT-AAR Crossing Inventory was then accessed. This provided
detailed crossing characteristic information such as the number of tracks, highway lanes, the location of the crossing, and the existing motorist warning device.

Other problems, such as illegibility, nonuniformity in billing format, and lack of audited cost, caused minor difficulties in data reduction.

2.3.2 Summary of Usable Installation cost Data

Table 2-1 presents a summary of usable installation cost data received according to region, type of project; and source. Due to missing data, "mixed system" projects, duplicates and other data inadequacies, these numbers represent only those projects utilized for the life cycle cost analysis. The total usable sample includes 321 crossing installations out of a total received sample of approximately 450.

2.3.3 Maintenance Cost Data

Maintenance costs were obtained from various sources in per signal unit values or total average annual costs. Signal units are used to represent the relative complexity of the various types of equipment comprising a rail-highway crossing warning device. The signal unit measurement technique was developed by the $A A R$ to ensure equitable division of the construction and mánitenance costs of joint signal fácilities and intériocking plants among railroads who shared these facilities. ${ }^{1}$

[^5]TABLE 2-1. SUMMARY OF USABLE INSTALLATION COST DATA

REGION	1	2	3	4	5	TOTALS
TOTAL NUMBER OF PROJECTS	22	111	54	40	94	321
TYPE OF PROJECT						
Passive	0	3	0	0	0	19

The basic maintenance cost data received is summarized in Table 2-2. The signal unit costs are converted to total average annual costes by using the number of signal units for the various motorist warning devices and train detection systems. Three sources, the Maine Central Railroad, Conrail, and the Texas Railway Association (TRA), provided data on actual maintenance costs. TRA's figures are based on a survey of the maintenance costs incurred at 188 public rail-highway crossings, while the other two sources represent averages of recent maintenance expenditures. The other sources provided data on amounts that were negotiated between states and railroads. These negotiated values are used as the basis for sharing the maintenance costs between the two parties. The states listed in Table 2-2 contribute 50 percent of the maintenance costs with the exceptions of Wisconsin and California which contribute 25 percent and 100 percent, respectively.
table 2-2. basic average annual maintenance cost data by source, Applicable year and motorist warning device

SOURCE	APPLICABLE YEAR	FLASHING LIGHTS	CANTILEVERED FLASHING LIGHTS	FLASHING LIGHTS WITH GATES	CANTILEVERED FLASHING LIGHTS WITH GATES
Californial	1965	\$ 440	\$ 560	\$ 909	\$1090
Conrail ${ }^{2}$	1977	2004	2004	2968	2968
Florida DOT ${ }^{\text {l }}$	1971	650	860	980	1230
Iowa ${ }^{1}$	1977	1079	1374	2233	2675
Maine Central ${ }^{2}$	1977	1358	1729	2809	3365
North Carolinal ${ }^{1}$	1968	650	950	980	1250
Texas Railway ${ }^{1,2}$ Association	1977	840	1080	1960	2160
Virginia Railway ${ }^{1}$ Association	1966	675	860	1015	1230
Wisconsin ${ }^{1}$	1977	1070	1362	2214	2652

[^6]
3. COST FINDINGS

3.1 LIFE CYCLE COST PROCEDURE

The cost information received consisted of installation costs for projects incurred over the four-year period from 1975 to 1978 and maintenance costs from 1965 to 1977. To compare these costs on an equal basis, it was necessary to convert the costs into 1977 dollars, the base year assumed for this study. The AAR Quarterly Material Prices and Wages Index was used to obtain the necessary conversion factors for this purpose.

To calculate total life cycle costs for the various types of warning devices installed, average annual maintenance costs were distributed over the service life of the device. A service life of 30 years was assumed, based upon several sources of information. An interview with an expert on railroad depreciation rates at the Interstate Commerce Commission (ICC) ${ }^{\text {l }}$ revealed that the Depreciation Branch of the ICC periodically studies individual Class I railroads to determine the economic life of railroad signal equipment: These unpublished studies are not formally documented. However, their results indicate that the average ICC signal equipment depreciation period in 1977 for the 20 largest, by operating revenues, Class I railroads was 30 years. ${ }^{2}$ In addition, the State of California Public Utilities Commission in its study of the effectiveness of automatic protection of rail-highway crossings, assumed a

[^7]30-year economic life for motorist warning devices. ${ }^{1}$ This figure applies to both motorist warning devices and train detection systems. The average annual maintenance costs were discounted to 1977 dollars using the method outlined in the OMB Circular A-94, Revised.

3.2 NATIONAL LIFE CYCLE COSTS

Life cycle costs were calculated on a national basis for each of the four motorist warning devices. The results are shown in Table 3-1 as total life cycle costs comprised of the two elements, installation and maintenance costs.

TABLE 3-1. INSTALLATION, MAINTENANCE, AND TOTAL LIFE CYCLE
COSTS FOR MOTORIST WARNING DEVICES (IN \$K)

MOTORIST WARNING DEVICE	INSTALLATION COST	MAINTENANCE COST	LIFE CYCLE COST
Flashing lights	26.0	14.1	40.1
Cantilevered flashing lights	29.4	17.4	46.8
All flashing lights			

[^8]
3.2.1 Installation Cost Components

The installation cost element of the total life cycle costs for motorist warning devices are composed of five cost components which substantially contributed to the total one-time cost of installation. These components are described below.
l. Preliminary engineering - labor and overhead.
2. Signal labor - signal, track, communications, signal repair (assembly) labor costs, and the associated labor overhead.
3. Material - the total cost of all material utilized to install motorist warning devices and train detection systems. This includes track material such as ballast, as well as signal equipment. Material handling costs, such as state sales and use taxes, storage costs, and freight and transportation costs are also included.
4. Equipment lease and rental - the cost to rent or lease heavy equipment such as back hoes, tractors, or railroad cars necessary to transport or install signal equipment.
5. Miscellaneous costs - three cost components (personal expenses - signal crew meals and lodging, salvage value, and billing and accounting) were deleted from the components list. They were highly variable and comprised only 0.001 percent to 5 percent of the total initial costs. Personal expenses depended on the location of the crossing in relation to the crew's home work-base and the amount of contract labor utilized. Contract labor purchase vouchers and accounting costs differed by railroad rather than by motorist warning device installation type. This latter cost component appears to be dependent upon the type of internal railroad organization rather than the project type. Salvage value was negligible, averaging between $\$ 50$ to $\$ 100$ per crossing.

The final billings were grouped by motorist warning device and cost components were isolated and averaged. Table 3-2 shows these calculations for each motorist warning device.

In Table 3-2, several cost trends were identified.

As the motorist warning device installed increases in complexity, the average total cost also increases.

Signal labor, material, and equipment rental increase consistently among the component costs as the complexity of the motorist warning device increases. However, material costs increase at a faster rate than the others and account for the major cost differences among the various motorist warning devices.

Pre-engineering costs do not vary in any consistent manner. This seems to indicate that engineering costs may be dependent upon the locational characteristics

TABLE 3-2. AVERAGE INSTALLATION COSTS BY MOTORIST WARNING DEVICE AND COST COMPONENTS (IN \$K)

MOTORIST WARNING DEVICE	$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$	$\begin{gathered} \text { PRE } \\ \text { ENGI- } \\ \text { NEERING } \\ \text { COST } \end{gathered}$	$\begin{aligned} & \text { LABOR } \\ & \text { COST } \end{aligned}$	MATERIAL COST	$\begin{aligned} & \text { EQUIP- } \\ & \text { MENT } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { MIS- } \\ & \text { CELLA- } \\ & \text { NEOUS } \\ & \text { COSTS } \end{aligned}$
Flashing lights (60)	26.0	1.4	7.2	13.8	0.8	2.8
Cantilevered flashing lights (40)	29.4	1.2	7.9	17.7	1.1	1.5
Flashing lights with gates (97)	39.2	1.2	9.7	25.0	1.2	2.1
Cantilevered flashing lights with gates (40)	44.6	1.4	10.3	29.4	1.5	2.0
Flashing lights upgraded to flashing lights with gates (40)	33.5	0.7	8.6	21.4	1.4	1.4
Flashing lights upgraded to cantilevered flashing lights with gates (21)	42.7	1.1	9.9	27.6	1.9	2.2

$$
(n)=\text { sample size }
$$

of the crossing, the type of accounting system used by the railroad to allocate these costs, or the type of contract/railroad labor employed.

Material costs, as a percentage of total costs, increase as the motorist warning device complexity increases, while labor costs as a percentage of total costs decrease. Equipment rental costs as a percentage of total costs, remain fairly constant for all types of warning devices, as shown in Table 3-3. This suggests that while total labor costs increase as the complexity of the motorist warning device increases, they proportionately comprise a smaller percentage of the total costs.

The major cost differences between cantilevered flashing lights and flashing light installations occur in the material cost component. Table 3-4 demonstrates the cost differences. The sample yielded cost differences which are very similar for flashing light and flashing light with gate installations. The material cost for installing cantilevered flashing lights with gates is higher than for nongate installations.

Upgrade projects are less expensive than new installations. Table 3-5 shows the comparative costs for upgrades and new installations.

3.2.2 Installation Cost Confidence Intervals

Confidence intervals at the 0.025 level (95 percent) were established for the average cost figures for each motorist warning device installation and upgrade. Table 3-6 shows these cost ranges. The method used to calculate the confidence intervals is contained in Appendix D.

:	LABOR (PERCENT)	MATERIAL (PERCENT)	EQUIPMENT (PERCENT)
Flashing lights	30	53	3
Cantilevered flashing lights	27	60	4
Flashing lights with gates	25	64	3
Cantilevered flashing lights with gates	23	66	3

TABLE 3-4. TOTAL INCREASE IN INSTALLATION COSTS OF MOTORIST WARNING DEVICES DUE TO CANTILEVERS (IN \$K)

	FLASHING LIGHTS WITHOUT GATES	FLASHING LIGHTS WITH GATES
Total cost	3.4	5.4
Signal labor	0.7	0.6
Material	2.4	4.4
Equipment	0.3	0.4

TABLE 3-5. COMPARISON OF UPGRADE AND INSTALLATION COSTS FOR MOTORIST WARNING DEVICES (IN \$K)

	UPGRADE TO GATES	INSTALL GATES	UPGRADE TO CANTILEVERED FLASHING LIGHTS WITH GATES	INSTALL CANTILEVERED FLASHING LIGHTS WITH GATES
Total cost	33.5	39.2	42.7	44.6
Pre-engineering	0.7	1.2	1.1	1.4
Signal labor	8.6	9.7	9.9	10.3
Material	21.4	25.0	27.6	29.4
Equipment	1.4	1.5	1.9	2.9

TABLE 3-6. 95 PERCENT CONFIDENCE INTERVALS FOR AVERAGE INSTALLATION COSTS BY MOTORIST WARNING DEVICE (IN \$K)

	CONFIDENCE INTERVAL	MEAN COST
Flashing lights Cantilevered flashing lights	$27.5-31.3$	29.4
Flashing lights with gates	$36.8-41.6$	39.2
Cantilevered flashing lights with gates	$40.4-48.8$	44.6
Flashing lights upgraded to gates	$30.3-36.7$	33.5
Flashing lights upgraded to canti- levered flashing lights with gates	$38.7-46.7$	42.7

3.2.3 Factors Influencing Installation Costs

The next step in the analysis was to isolate those factors which influence the total cost of an installation. It was hypothesized that three factors would be influential.

> Type of train detection system - From the initial literature search, a hierarchy of train detection systems was determined in terms of their relative complexity. This hierarchy is, from simplest to most complex: direct current, alternating/direct current, audio frequency overlay, motion sensors or detectors, and grade crossing predictors. The total costs were expected to vary according to the type of train detection system installed.

Number of railroad tracks - Costs were expected to increase by the number of tracks as circuitry work would be more extensive and complicated.

Location of the crossing - Costs were expected to vary depending upon whether the crossing was rural or urban. The costs of transporting the material and crew to the site and the extent of circuitry work were hypothesized as influential factors.

It was determined that the number of sample crossings required to determine the influence of each factor for each region would be approximately 34,500 . This assumed a sample of 15 observations for each permutation. This is demonstrated in Figure 3-1. As shown in this tree diagram, there is a very large number of possible combinations for any one motorist warning device in each region. Since the initial analysis had indicated no regional variations in cost, the regional samples were pooled to form one national sample for analysis of the factors.
REGION 1
REGION 2
REGION 4
REGION 5

Additionally, detailed operating and locational data for each crossing were obtained by utilizing the DOT-AAR Crossing Inventory. Costs were then calculated for the crossings using the DOT-AAR Crossing Inventory data to control for cost factors.

Location - When the sample data were grouped by urban or rural location, the cost figures shown in Table 3-7 resulted. This shows that the cost differences by urban and rural location are very small and inconsistent. Confidence intervals calculated for the urban and rural costs shown in Table 3-8 also indicate considerable overlap in costs. When the number of tracks at the crossing is controlled, a similar inconsistent trend is found. Tables 3-9 and 3-10 show average costs and confidence intervals for one-track urban and rural crossings.

Number of tracks - The number of tracks at each crossing was expected to affect the total costs. As Table 3-ll demonstrates, this hypothesis was verified. The additional cost for two-track crossings ranges between 9 percent and 37 percent of a one track installation. Confidence intervals for the installation costs by track are found in Table 3-12.

Existence of track circuitry - This factor refers to whether or not the crossing was equipped with track circuitry for control of train operations or other warning devices. While none of the bills obtained for the study provided information on the type of circuitry existing at the crossing, the Seaboard Coast Line Railroad provided a list of a few crossings with track circuitry. However, the sample of crossings was not large enough to permit a statistically meaningful analysis of this factor.

TABLE 3-7. AVERAGE INSTALLATION COST FOR MOTORIST WARNING DEVICES BY LOCATION (IN \$K)

LOCATION	MOTORIST WARNING DEVICE			
	FLASHING LIGHTS	CANTILEVERED FLASHING LIGHTS	FLASHING LIGHTS WITH GATES	CANTILEVERED FLASHING LIGHTS WITH GATES
Urban	28.1 (14)	29.3 (12)	38.0 (26)	42.6 (22)
Rural	26.5 (46)	29.5 (28)	39.0 (71)	46.5 (23)

$(\mathrm{n})=$ Sample size

TABLE 3-8. 95 PERCENT CONFIDENCE INTERVALS FOR AVERAGE INSTALLATION COSTS OF MOTORIST WARNING DEVICES BY LOCATION (IN \$K)

LOCATION	MOTORIST WARNING DEVICE			
	FLASHING LIGHTS	CANTILEVERED FLASHING LIGHTS	FLASHING LIGHTS WITH GATES	CANTILEVERED FLASHING LIGHTS WITH GATES
Urban	26.3-29.9	25.3-33.1	29.3-46.7	42.5-45.5
Rural	24.0-28.9	25.5-32.1	35.5-42.3	40.6-52.3

'TABLE 3-9. AVERAGE INSTALLATION COSTS FOR MOTORIST WARNING DEVICE BY LOCATION, SINGLE TRACK (IN \$K)

| | | MOTORIST WARNING DEVICE |
| :--- | :---: | :---: | :---: | :---: |

TABLE 3-10. 95 PERCENT CONFIDENCE INTERVALS FOR MOTORIST WARNING DEVICE INSTALLATION COSTS BY LOCATION, SINGLE TRACK (IN \$K)

| | | MOTORIST WARNING DEVICE |
| :--- | :--- | :--- | :--- | :--- |

TABLE 3-11. AVERAGE INSTALLATION COSTS BY NUMBER OF TRACKS (IN \$K)

TABLE 3-12. 95 PERCENT CONFIDENCE INTERVALS FOR AVERAGE INSTALLATION COSTS FOR MOTORIST WARNING DEVICES BY NUMBER OF TRACKS (IN \$K)

	MOTORIST WARNING DEVICE			
TRACKS	FLASHING LIGHTS	CANTILEVERED FLASHING LIGHTS	FLASHING LIGHTS WITH GATES	CANTILEVERED FLASHING LIGHTS WITH GATES
1	$22.2-26.8$	$24.4-31.1$	$30.9-33.6$	$36.9-45.1$
2	$23.7-33.8$	$25.7-37.0$	$42.4-46.6$	$41.6-54.5$
3	Sample size not large enough for meaningful calculations			

Track work - There are two types of track work which may occur during a signal installation. The first type, crossing surface work, involves the repair or replacement of the crossing surface material. The second type involves electrical and communications work necessary to install or modify the track circuitry for the train detection system, e.g., insulate joints for DC or AC-DC circuitry. The latter was hypothesized to influence costs. Many of the final billings provided signal labor and material costs itemized by track, communications, and electrical work. Track and communications costs contributed between 8 percent and 12 percent of the signal labor costs and between 2 percent and 5 percent of the material costs.

Train detection system - To determine if the type of train detection system installed affected the total installation costs, the data were divided by motorist warning device, train detection system, and number of tracks. Table 3-13 shows the variations in costs. Only the costs within each motorist warning device type should be compared to determine the hierarchy of train detection system costs, because the number of tracks for the different devices is not consistent. As Table 3-13 shows, Grade Crossing Predictors (GCP) comprise the most expensive train detection system and are frequently installed with gate devices. Audio Frequency Overlays (AFO) were the second most costly to install, followed by Alternating/Direct Current (AC/DC) in three out of four cases, and Motion Sensors (MS). It is interesting to note that although Motion Sensors are among the more sophisticated and complicated detection systems, they are consistently the least costly.

TABLE 3-13. AVERAGE INSTALLATION COSTS FOR MOTORIST WARNING DEVICES BY TRAIN DETECTION SYSTEM AND NUMBER OF TRACKS (IN \$K)

		MOTORIST WARNING DEVICE			
		FLASHING LIGHTS	CANTILEVERED FLASHING LIGHTS	FLASHING LIGHTS WITH GATES	CANTILEVERED FLASHING LIGHTS WITH GATES
	Tracks	1	1	2	2
Train Detec- tion System	Grade Crossing Predictors (GCP)	--	--	54.3	45.9
	Audio Frequency Overlay (AFO)	25.9	33.3	46.2	44.2
	Alternating/Direct Current ($A C-D C$)	22.6	26.9	43.6	44.2
	Motion Sensors (MS)	22.3	28.5	39.0	39.2
	Direct Current (DC)	Sample calcula	size not large ions.	enough for	meaningful

3.2.4 Maintenance Costs

The maintenance data received were not itemized by year over the life of the equipment but were expressed as total average annual costs. These costs were determined by summing the maintenance costs incurred in a year for each type of motorist warning device and dividing by the number of crossings. Motorist warning devices of varying age and condition were therefore included in the compilation of average annual costs. Although maintenance costs may increase with the age of the device, the average annual costs do not reflect this type of variation. For this reason, life-cycle 30 -year maintenance costs were determined on the basis of discounting average annual cost over the life of the equipment.

The original maintenance cost data received for the study and shown in Table 2-2 were based on various years. All maintenance costs were therefore updated to 1977 dollars to provide a consistent basis for analysis. The resulting average annual and 30 -year life cycle maintenance costs are shown in Table 3-14. It should be noted that the maintenance costs shown in Table 3-14 based on negotiated values do not represent the actual costs contributed by the states. In all cases, the states contribute no more than 50 percent of these amounts as shown in Table 2-2.

The resulting 30 -year life cycle maintenance costs expressed as a percent of installation and total life cycle costs are shown in Table 3-15. Maintenance costs as a percentage of installation costs increased with the complexity of the motorist warning device.

3.3 REGIONAL COST FINDINGS

The average total installation cost and installation component costs for each active motorist warning device were compared
TABLE 3-14. AVERAGE ANNUAL AND 30-YEAR LIFE CYCLE MAINTENANCE COSTS

	FLASHING LIGHTS			CANTILEVERED FLASHING LIGHTS			FLASHING LIGHTS WITH GATES			CANTILEVERED FLASHING LIGHTS WITH GATES		
		AVERAGE ANNUAL	30-YEAR									
California	\$	1,173	\$11,061		1,493	\$14,077		2,426	\$22,876	\$	2,096	\$27,401
Conrail		2,004	18,891		2,004	18,891		2,968	27.979		2,968	27.979
Florida DOT		1,928	18,175		2,471	23,299		2,822	26,602		3,399	32,050
Iowa		1,079	10,178		1,374	12,952		2,233	21,050		2,675	25,217
Maine Central		1,358	12,808		1,729	16,299		2,809	26,486		3,365	31,724
North Carolina		2,043	19,259		2,619	24,690		2,849	26,857		3,323	32,357
Texas Railway Association		840	7,919		1,080	10,181		1,960	18,468		2,160	20,362
Virginia Railway Association		1,960	18,476		2,512	23,686		2,866	27,021		3,453	32,555
Wiscons in		1,070	10,093		1,362	12,846		2,214	20,874		2,652	25,003
NATIONAL AVERAGE	\$	1.495	\$14,095		1,848	\$17,435		2,460	\$23,237	\$	2,870	\$27,055

TABLE 3-15. LIFE CYCLE MAINTENANCE COSTS AS A PERCENTAGE OF MOTORIST WARNING DEVICE COSTS

MOTORIST WARNING DEVICE	PERCENT OF INSTALLATION COSTS	PERCENT OF TOTAL LIFE CYCLE COST
Flashing lights lights	54	35
Flashing lights with gates	59	37
Cantilevered flashing lights with gates	59	37

on a regional basis. It was hypothesized that labor and material costs, including freight and handling charges, would vary geographically. By isolating these two component costs and comparing them by region, regional trends in installation costs were expected to be identified. To accomplish this, the final billings were grouped by FRA region and motorist warning device. Averages were then calculated for the total and component costs.

Regional variations in total and component costs did not follow any consistent patterns. No region demonstrated constant high or low costs in any of the cost component categories. One explanation for the lack of consistent variations is that the railroads cross regional boundaries and the costs appeared to vary more by railroad than by region. The results of the regional analysis are presented in Appendix C. Both maintenance and installation costs are itemized.

3.4 PASSIVE WARNING DEVICES

As indicated in Section 2.3.1, cost data on passive warning devices was very limited. The only available information consisted of three estimates for the costs of installing crossbucks at nine locations in Kentucky. These estimates, combined with information obtained from the material listings of the billings, indicate that the average material cost per crossbuck was approximately $\$ 72$. This includes the signs, posts, and related hardware. In the Kentucky estimates, labor costs per crossing were $\$ 80$ to $\$ 85$.

3.5 RUBBERIZED CROSSING SURFACES

Rubberized crossing surfaces are a relatively new product and are not installed as frequently as other types of surfaces. The cost information received on rubberized surface installations was very limited in terms of sample size and in many cases was incomplete. This was due to the fact that most of the billings on rubberized surfaces contained cost data on other track and signal work performed at the crossing. It was difficult to isolate labor, equipment rental, and total costs for the rubberized crossing work. However, several steps were taken to determine the relevant costs.

Material costs were analyzed in two ways. First, the detailed materials listed in the billings were examined and the costs of the rubberized surface were isolated. The number of track or linear feet of rubberized surface installed at each crossing was obtained from the work description and the cost per foot of rubberized pads was then calculated. To check these calculations, manufacturers of rubberized crossing surfaces were contacted to obtain quoted sales price on their cost of rubberized surfaces per track foot. The manufacturers provided detailed information on the types of material available, the
installation process, and estimates of the service life of the crossing surface. Table 3-l6 shows the cost per track foot of the rubberized crossing surfaces obtained from the actual billings and the manufacturers.

The material costs per track foot are fairly consistent between manufacturers' information and the billings. The actual material costs for any given crossing will vary by the number of tracks, number of highway lanes, and the angle of the crossing. Additionally, the age and condition of the tracks, ties and ballast will affect the total cost of the project as the manufacturers recommend new tracks and ties be in place before the surface is installed.

Maintenance costs for rubberized surfaces are estimated to be almost nonexistent. For rubberized pads, preventive maintenance consists of periodic sweeping out of debris from the flangeways. Other maintenance costs may occur only once every several years when the trackage is retamped. If a rubberized pad is found to be defective at this time, a new pad may be inserted in its place. For the epoxy and rubber aggregate mixture, maintenance consists of cutting out the damaged portion of the pad, and recasting it with the rubberized material.

Labor costs for installing the rubberized surfaces also vary by the type and size of the crossing. From the final billings, labor costs were calculated per trackfoot. The sample size for labor costs was very small; only eight billings provided separate labor costs. The labor costs per track foot of rubberized surface installed ranged from $\$ 70$ to $\$ 85$.

Equipment rental and total costs were difficult to isolate because billings contained cost data on other types of crossing work. However, equipment rental costs vary by the type of material installed. The epoxy and rubber aggregate mixture surface requires special machinery. Thịs equipment along with

TABLE 3-16. MATERIAL COST PER TRACK FOOT FOR RUBBERIZED CROSSING SURFACES

SOURCE:	COST PER TRACK FOOT	SERVICE LIFE	TYPE OF MATERIAL

(n) = sample size
supervision is provided by the manufacturer. The manufacturer estimated the cost per track foot to be $\$ 295$ to $\$ 300$ if the equipment and personnel are included. The other rubberized surfaces require standard equipment and tools for installation. The costs for each crossing installation will vary by the amount of equipment each railroad owns.

Total costs for the installation of rubberized surfaces were also calculated per track foot. Only ten billings had a sufficient cost breakdown to determine total costs. The total costs ranged from $\$ 319$ to $\$ 535$ per track foot, and the mean total cost was $\$ 389$ per track foot. Since the sample size was small and the costs were difficult to allocate according to the type of crossing work, these figures must be viewed as approximations. Table 3-17 summarizes the rubberized crossing surface cost data.

TABLE 3-17. SUMMARY OF RUBBERIZED CROSSING SURFACE COST DATA

TYPE OF COSTS	COST PER TRACK FOOT
Total costs	$\$ 389$
Labor costs	$\$ 70-85$
Material costs	$\$ 220-227$
Maintenance costs ${ }^{l}$	$\$ 5$

$1_{\text {Texas }}$ Transportation Institute, Railroad-Highway Grade Crossing Handbook, Report No. FHWA-TS-78-214, U.S. Department of Transportation, Federal Highway Administration, College Station, Texas, August, 1978.

APPENDIX A

TRANSPORTATION SYSTEMS DNISION

July 26, 1978
Mr. T. B. Hutcheson
Assistant Vice President of Engineering
Seaboard Coast Line Railroad
500 Water Street
Jacksonville, Florida 32202
Dear Mr. Hutcheson:
Input Output Computer Services (IOCS) Of Cambridge, Massachusetts, is under contract to the Transportation Systems Center (TSC) of the U.S. Department of Transportation to collect, analyze, and document life cycle cost data on grade crossing warning systems. This research is being done for the Federal Railroad Administration.

As discussed with you in a phone conversation on Tuesday, July 25, 1978, we are looking for copies of the detailed final billings for at least twenty grade crossing warning system projects where active equipment was installed new or as an upgrading. We are interested in a package that includes each of the four active equipment configurations: namely, flashing lights, flashing lights with gates, cantilevered flashing lights, cantilevered flashing lights with gates. The package should also cover the variety of train detection systems: constant warning time devices, motion sensors, AC-DC rectified circuits, DC circuits, and Audio Erequency Overlay. A variety of projects that includes one or more sets of tracks, single lane or multi-lane roadways, and the presence of existing track circuits is desired as is the $F R$ crossing number. We are interested in information on projects from January 1, 1975, to the present which encompass several of the states in which Seaboard does business.

Included in the scope of our study are maintenance costs incurred by the railroads to maintain a grade crossing and its equipment. You spoke of a payment scheme whereby Florida, North Carolina, and Virginia pay Seaboard a fixed fee for maintenance per year per crossing. Please include in the package these fee schedules as well as any other information that is available on grade crossing maintenance costs.

```
Mr. T. B. Hutcheson
July 26, 1978
Page Two
```

Our project is of short duration and these data needs very important. We hope that you can provide the requisite information before August 14, 1978. As stated by Bob Stout of the AAR in his letter to you dated June I 1978 (attached), this study will be helpful to the railroad industry.

We appreciate your cooperation and hope to hear from you soon. If you have any questions, please feel free to call us.

JPA:mr attachment
C. L AMOS

Executive Director
R. B. STOUT

Manager-Rail Highway Programs

The Transportation Systems Center of the U. S. Department of Transportation has awarded a contract to Input Output Computer Services, Inc. (IOCS), to collect, analyze, and document grade crossing warning systems life cycle cost. This research is being done for the Federal Railroad Administration.

The study has important implications regarding the future of the grade crossing warning device installation program. Of even greater importance is the impact it may have with respect to the future of maintenance responsibilities. Therefore, it is to our benefit that the study be done right. Good cost data is essential if this is to be a useful tool for public policy development and if it is to be helpful to our industry.

IOCS has selected your railroad as one of those from which they may seek to obtain data. Mr. Curtis Priest, Mr. Charles Erdrich, or other members of the OICS research team will likely be in contact with you in the near future. Since the data needed can only come from the railroad industry, I would appreciate any assistance which you can render to this team.

S: y
cc: W. Curtiss Priest, Ph.D.

TRANSPORTATION SYSTEMS DNISION

June 28, 1978

Mr. Donald Higgins
Chief of Local Assistance
California Department of Transportation
Sacramento, CA

Dear Mr Higgins:
Input Output Computer Services (IOCS) of Cambridge, Massachusetts is under contract to the Transportation Systems Center (TSC) of the U.S. Department of Transportation to collect, analyze, and document life cycle cost data on grade crossing warning systems. The data will be used as input into a computer model that TSC has developed for the Federal Railroad Administration that will improve the methods by which states prioritize and allocate funds for grade crossing improvement programs.

We intend to collect data from at least one state in each of the five FRA regions. We have selected California due to its extensive work with the railroads and its thorough oversight of the crossing improvements.

We understand that the operating railroads submit detailed cost estimates as part of the federal funding process. As discussed with you in our phone conversation on Wednesday, June 28, we would like copies of these estimates and the detailed final billings for approximately 100 grade crossing improvement projects where active equipment was installed either new or as an upgrading of an existing active system. We are interested in information on consecutive projects from January 1, 1975 to the present.

The level of detail in which we are interested includes information on engineering, procurement, installation, and labor costs for all subsystems and subsystem components of the crossing warning system. For our purposes these subsystems are: train detection, control logic,

INPUT OUTPUT COMPUTER SERVICES, INC.

$$
-2-
$$

crossing surface, vehicle warning, and interconnection (cable and power hook-ups.) The FRA crossing number is also desired.

Our project is of short duration and these data needs quite important. We hope that you can provide the requisite data before July 24,1978 . We will gladly pay photocopying expenses.

We appreciate your cooperation and hope to hear from you soon.

JM: hw
cc: Curtis Priest, IOCS

APPENDIX B

EXAMPLE OF A COST BILLING

STATE CF ARKANSAS
STATE FICHWAY DEPT.

IITTLE RCCK APKANSAS

BILL \triangle UDIT FO MONTHS ACCOUNTACCTG DEPT NODATE MADE -
SA- GO904518

IASTALLING CRESSING WARNING SYSTENS AT STATE HIGHWAY $161 \times I N G$ NC TCN 287-72. AI LITTLF RUCK BRANCH ARKANSAS CMO-SO451

FINAI
RILL PER STATEMENT AITACHED
DATE FIRSI WCRK PFRF ORMFD JUL-IG77
DATF LAST \quad CRK PERFIIRMEC FER-1S78
THE RECCRES SUPOORTING THE GHARGES IN THIS BILL ARE LDCATED IN THE SIFFICE CF NANAGER OF DISBURSFMFIUTS ACCOUNTING, SAN FKANCISCO. CALIFORNIA

	$S U M M A R Y$	
1-INSTALL SIGNALS	-- - .. - -	23455.96
2-PRFLIMINARY FNGK		681.51
3-ACCIG. ¢ PRF?.		136.58
T C T \triangle L B I L L		24274.07

```
PAGE - 1
```


l-INSIAL SIGNALS

APCR				
12	77	SYS.S	AAL	SHOD
12	77	SYS.S	NAL	S $\mathrm{HiO}^{\text {P }}$
12	77	SYS.S	GNAL	Siljo
1	78	SIGNAL	GANG	\#26
1	78	SIGNAL	GANG	$42 h$
1	78	SIGNAL	GANE	\# 3 h
1	78	SIGNAL	GANC,	\#2h
7	7月	SIGNAL	GANG	426
7	78	SIGAAL	GANG	* 2 h
2	78	SIGNAL	GANG	5
	78	SIGA		

$$
\begin{aligned}
& \text { PL.US- } 7.25 C \text { VACATITN ALL } \\
& \text { 3.5CC\% PC HOLIDAY } \\
& \text { 23.1CC\$ RREUI IAXES } \\
& \text { 5.CCC\% HFALTHE WELFARF } \\
& \text { 3.CCC\% CCNPIVS } \\
& \text { 1.CGC\% PLEP! INS }
\end{aligned}
$$

$$
0.125 / H R E X C \text { TAX ON 55日.COO HRS }
$$

2.00	HRS AT S. 5098	19.02
4.00	HRS AT 7.7700	31.08
64.00	HRS AT 7.0́600	450.24
48.00	HRS AT 9.5094	456.45
St.00	HRS AT 7.6600	735.36
48.00	HRS AT 6.5800	315.84
48.00	HRS AT 6.4900	311.52
64.00	HRS AT10.4604	669.40
56.00	HRS AT 7.6600	735.36
64.00	HRS AT 6.5800	421.12
24.100	HRS AT 6.4900	155.76
		4341.21
กN	4341.21	314.74
ON	4341.21	151.54
CN	4807.85	1110.67
ARF CN	4341.21	217.06
ON	4655.95	139.68
CN	4655.55	46.56
58.coso	HRS	69.75

$$
6351.56
$$

KATFRIAL
1.CO $2 C 781$ RLGMER FAN

UNIT PRJC.F IS
TOTAL WHIGHT IS

2 FRCM A
11.4500 EA 0.0 LBS
11.45

```
PAG E - 2
```

STATE CF ARKANSAS
STATE FICHHAY DEPT.
P.D.BOX 2261

IITJLE RCCK \triangle RKANSAS

BILL AUDIT NG MUNTHS ACCOUNTACCTG DEPT NCDATE MADE -SA- GO904518
1.CC JE2OE THERNOSTAT

UNIT PRIG.F IS
TCTAL mFIGHT IS
46.CG SCREM RRASS RH \#̈10X1"

UAIT PRIC.F IS TCTAL WFIGHT IS
10.CO SCREK ERASS RH $\# 10 \times 3 / 4^{\prime \prime}$ UAIT PRIC.F IS
TDTAL WFIGHT IS
31.OC SCREh MACHINF 1/4"×2CX7/E" UNIT PRIC.F IS TCTAL WFIGHT. IS
14O.nC FT WIKE \#6 BONIISTRANE UNIT PKICFIS TCTAL WHIGAT IS
300. RC FT WIRE $\# 10$ AWC FLEX UNIT PKICF IS TCTAL WFIGHT IS
300.CC FT hIFE FLEX 414 AhG UNIT PRIC.F IS TCTAL WFIGHT IS 2345.OC FT hIFE 1-CONO *O AWG UNIT PRICF IS TCTAL WFIEHT IS
1.CO CAPACITCR 2900 MFO . UNIT PRICF IS TETAL WFIGHT IS
1.OO CLANP CAPACITUK aVR3 UNIT PRIC.F IS TCTAL WFIGHT IS
2. DO RESISTCP SC OHM 5C WAIT UAIT PRIGF IS TCTAL WFIGHT IS
2. CC PADLCCK ASSY $\#+9-6$ UNIT PRIC.F IS
TCTAL WFIGHT IS

1. OG TRANSFQRMFR W-HOO

UNIT PRIC.F IS TCTAL WFIGHT IS

2 FROM A
13.6400 EA
0.0 LBS
13.64

2 FRCM A
0.060 CA
0.0 LBS 2.76

2 FRCM A
C. 0400 EA
0.0 LBS 0.40

2 FROM A
C. 0500 EA 0.0 LBS 1.55

2 FRCM A
0.5000 FT
0.0 LBS 70.00

1 FROM A
0.0980 FT
0.0 LBS 29.40

1 FRGM A
0.0510 FT
©. 0 LBS
15.50

1 FRCM A
0.1750 FT
0.0 LBS

2 FROM A
6.0000 EA
0.0 LBS

2 FRCM \triangle
C. 2000 EA
0.0 LHS

2 FROM A
2.6500 EA
0.0 LBS

2 FROM A
4.7500 EA
1.50 LBS

1 FROM A
238.1400 FA
0.0 LBS
6.00
9.50
410.37
0.20
5.30
238.14

PAGE-3

STATE CF ARKANSAS
STATE FIGHWAY DFPT.
P.O.CCX こ261

LJTTLE RCCK \triangle RKGiNSAS

BILL AUDIT NO MONJHS ACCOUNJACCIG DEPT NODATE MADE -SA- GOSO4518
1.OC RELAY CN-22A 4OHM $2 F R$ UNIT PRICFIS
TCTAL FITHT IS
2. OC RELAY PA-1503 */HASF UNIT PRUC.F IS TCTAL WFIGHT IS
1.CO RELAY PN-15OHD W/bASE UNIT PRIC.F IS TCIAL hFIGHT IS
1.C.C PELAY PN-150? w/BASE UNIT PRICFIS TCTAL WFJGHT IS
2.OC RELAY PF- 256 w/FASF UAIT PRIC.F IS TCTAL AFIIIHT IS

1. CO SP-19.2A SURGF PROTECTUR UNIT PPICF IS TCTAL WFIGHT IS

2 FROM A
94. C80 C.EA 0.0 LBS 94.08

1 FRGM A 245.7200 EA 0.0 LBS $\quad 499.44$

1 FROM A 2ऽ7.115S EA
0.0 LBS 297.12

1 FRCN A 251.920C FA 0.0 LBS 251.92

1 FROM A 35c.9259.EA
0.0 LBS 713.86

2 FRCM A
36.7500 EA
C. 0 LBS
36.75
7.CO MODEL SM XING IATE H/24 F/GAR 1 FRCN A UNIT PRIGFIS 2C31.6599 FA
TCTAL WH1GHT IS 0.0 LES 4063.32
7.CO A47SA 5 FLASH IIG SIG 2 hAY 1 FROM A UAIT PRIC.F IS 731.000C EA TCTAL WFIGHT IS 0.0 LBS 1462.00
1.OC 7hAY XING ARYS W/ムFA 12 "LIGHT 1 FRCN A UNIT PRICFIS 468.0000 EA
TCTAL WFIGHT IS C.O LBS 468.00
j.On aLUNINUM CC XIVG BELL 5"MAST 1 FRCM a UNIT PRICF IS 144.0000 EA TOTAL WIFTGHT IS 0.0 LBS 288.00
2.CC IASTRUMENT CASF 18-1/2" UNIT PRIC.F IS
TCTAL WHIGHT IS
1.0OLB NC-OXICE GRFASF

UNIT PRICFIS
TCTAL WFIGHT IS
0. 50 OT.PVC SCLVFNT C.FNFNT

UNIT PRIC.F IS
TCTAL WFIGHTIS

1 FRCIH A
33.5000 EA
U.0 LBS 67.00

2 FROM A
$0 . \operatorname{coO} \mathrm{C}$ L B
0.0 LRS 6.00

2 FRCM A
5.5000 OT
0.0 LES 2.75

```
PAGE - 4
```

STATE CF ARKANSAS
STATE FICHWAY DFPS．
P．C．BCX \quad © $2 \in 1$
ITTTLE RCCK ARKANSAS

BILL AUDIT NC－ MONTHS ACCUUNT－ ALCTG DEPT NC－ DATE MADE－ SA－GO904518

H．OO BCNE HIRE SUPPNRT CLAMP UNIT PRIGF IS TCTAL WFIGHT IS
2．OO LB JUIE RCPE PACKING UNIT PKIC．F IS TCTAL WFIGHT IS
2． CG GATE FCLACATIOV GALV UNTT PRIG．F IS TCTAL WFIGHT IS
5．RO CCNDLIT CCUPLING $11 / 4^{\prime \prime}$ UNIT PRICF IS TCTAL WFIGHT IS 40．6O FT．CCNDUIT 11／4＂FALV UAIT PRIC．FIS TCTAL WFIGHT IS
G．CC FE－24C EATTERIFSI 3CELLTRAY UNIT PRIC．F IS 85．4900 EA TCTAL MFIGHT IS 0.0 LBS 765.41
3．OC INSL．FAIL JOINIS B5 LES UNIT PRICFIS TCTAL WFIGHT IS 0.0 LES 447.00
108O．C．C FT．WIFE 1－GOND H 10 SCLIF． UNIT PEIGFIS U．OG\＆C FT ICTAL WFIGHT IS 0.0 LRS 105.84
1．CC NCTICA SFNSOR $=68350-156-2 C \quad 1$ FRCIM A UNIT PRICF IS 1S92．0000 EA TETAL WFIGHT IS 0.0 LBS 1952.00
1 月O．CC FT．CLADUIT 3＂PLC．
UNIT PRICFIS
TCTAL VFIGHT IS
t．OC ELBCh SC z＂
UNIT PRIC．FIS
TCTAL WFIGHT IS
20．CO C．CUPLING コロ
UNIT PRIC．F IS TCTAL WFIGHT IS
1．חO PCLES CRFO PINF SIG 40 UNIT PAICF IS TOTAL WFIGHT IS

1 FRGM A
2 FRCM A
0.7200 EA
0.0 LBS 1.76

2 FRDM A
0.3800 LB 0.0 LBS 0.76

1 FRGM A
146.0000 EA
0.0 LBS 292.00

2 FROM A
C． 2400 EA
0.0 LBS 1.20

2 FRCN A
0.3020 FT

J． 0 LBS
12.08

1 FRGM A

1 FRON A 149.0000 EA
1.7900 FT

C．O LBS 322.20
2 FRCM A
13．5000 EA 0.0 LBS

2 FROM A
1．56UC EA U．0 LES
2 FRON A
74.0000 EA 0.0 LBS 79.00
PAGE-5

STATE CF ARKANSAS
STATE FICHNAY DEPY.
P.0. 80 X 2261
I. ITTLE RCCK ARKANSAS

BILL AUDIT NO MONTHS ACCEUNTACCTG DEPT NCDATE MADE -SA- GO904518

PAGE- $-\quad-$

STATE CF ARKANSAS
STATE FIEHWAY DEP」.
P.O.BOX <261

IITTLE RCCK ARKANSAS

BILL AUDII NO MONTHS ACCOUNT-
ACCTS DEPT NC-
UATE MADE -
SA- GO904518

3九.CC 628-16N TERM INSI \#14-1t AnG 2 FRCM A UNIT PRICFIS O.OROO EA TCTAL WFIGHT IS 0.0 LBS 2.88
3G. CC G2R-ITN INSL TFRM $41 C-12$ AWG 2 FRCM A UNIT PRICFIS C.OBOO FA TOTAL WFIGHT IS 0.0 LES 2.8.
4. CC 62S-1 TEST TFRM \#14-1 1 AWG 2 FRON A UNIT PRIC.F IS O.500C EA TCTAL WFICHT IS 0.07 LBS 2.0G
3u.rC E.28-2 TEST TERM *10-12 AhG 2 FROM A UNIT PRICHIS C. 5400 EA TCTAL WFIGHT IS 0.54 LRS 16.20
3. مC 320-عEl API SPAD TFRM \#14-16 2 FROM A UNIT PRIGFIS C.IIUGEA TCTAL WFTEHT IS 0.0 LBS 0.33
2.CC 628-2L FLAG TEKM $\$ 14-1 \in \Delta n G \quad 2$ FROM A UNIT PRICF IS 0.0500 EA TCTAL WFIGHT IS 0.0 LBS 0.1G
$10.003215 S \varepsilon$ RING-TONG TFRN E ANG 2 FRGM A UNIT PKICFIS G. 1500 FA TOTAL WHIBHT IS 0.0 LBS 1.50
5.CO C.CNNECTCR \#839-5 12"LONG 2 FROM A UNIT PRIRFIS C.7900 EA TCTAL WFIGHT IS 0.0 LBS 3.95
$9.0012-F C S T$ TERA STRIP \#390-11 \quad FRCM A UNIT PRIC.F IS 4.7500 EA TCTAL WFIGHT IS 0.0 LBS 42.75
17.CQ $2-$ PCST TERN \#G17-5X 2 FROM A UNIT PRIC.F 15 1.1800 EA TCTAL WFIGHT IS 0.0 LBS 14.16
7R.CC FLEXITE PLASTIC. MARKING TUBES ? FRGM A UNIT PRIC.F IS C.OTOOEL TCTAL WFIGHT IS 0.0 LBS 5.46
RA. RC TAGS ELACK FIRFR
2 FRCN A
UNIT PRIC.F IS
0.1040 FA

TCTAL WFIGHT IS
7.CC \#4C8 IASL NUT
0.0 LBS

2 FROM A
UNIT PFIC.F IS
0.7900 EA

TCTAL WFICHT IS
0.0 LES
5.53

PAGE- 7

STATE CF ARKARSAS
STATE FIGHINAY DFPT.
P.r.eOX 2261

IITTLE RCCK ARKANSAS

BILL AUOIT NO MONTHS ACCOUNTACCTG DEPT NCDATE MADE -SA- GUY04518

STATE CF ARKANSAS
STATE FICHWAY DEPT.
P. П. BCX $2<61$

IITTLF RCCK $\triangle R K A N S A S$

BILL AUIJIT NC -
MONTHS ACCMUNTACCTG DEPI NODATE MADE -SA- $\quad 60904518$

STATE GF ARKANSAS
STATE FIGHAAY DFPT.
P.li.BUX \quad e $2 \in 1$
I. ITILE RCCK ARKANSAS

BILL AUDIT NO -
MUNTHS ACCOUNT-
ACCTG DEPT NGDATE MAUE -SA- G0904518


```
PAGE - 10
```

STATE CF ARKANSAS
STATE FIGHWAY DEPJ.
F.C. BCX z $\mathrm{Z} \in 1$

- . IITTLE RCCK \triangle RKANSAS

BILL AUDIT NO MUNTHS ACCOUNTACCTG DEPT NODATE MADE -SA- GO904518

TOTAL INSTALI SIGNALS

- TーPRFLIMINAFY ENGR
- Lahrr \quad - 77 M.K.KLNIYA

$$
\begin{array}{llll}
4.00 \text { HRS AT } 7.9167 & 31.67 \\
8.00 \text { HRS AT } 9.9108 & 75.25
\end{array}
$$

777 A.R.RATH

```
P\triangleGE - 11
```

STATE CF ARKAASAS
STAJE FIGHIAY DFOJ．
P．万．ROへ こ 26l
IITTLE RCCK \triangle RKANSA．S

BILL AUDIT NO－ MONTHS ACCUUINT－ ACCTG DEPT N［－ DATE MADE－
SA－GO9045i8

777 A．KLENENS JR
777 M．R．FFANKF
1C77E．FERAANCEZ
JO 77 T．J．WFIGHT
1077 C．O＂ALRA

3．00 HRS AT 8．3929
25.18
2.00 HRS AT 9.6429
14.00 HRS AT 9.8215
15.00 HRS AT $7.6191 \quad 114.29$

1．OCG DAYS AT 56.140056 .14

PIIIS 7． 25 C V VACATITN ALL．
3．5CC．PC HOLI DAY
23．1CC名 RREUI IAXES 5．CCC天 HESLTH \＆wFLFARF コ．CCC\％CCNP IVS 1．CCCF PLEP！INS $0.125 /$ RR EXC TAX ON

UN
ON
ON
Civ
CA $\quad 463.36$
UN $4 \mathrm{S6} .55$
54.000 HRS
463.36
463.36 513.17 463.36
－ 463.36
463.36
33.54 16.27
118.54 23.17 14.91
4.97
6.75
681.51

TOTAL PRELIMIMAHY ENGR
681.51

3－ACRTG．\＆PFEP．

1ARCR
678 ACCTG E PREP $1.5 C O$ DAYS AT $61.8400 \quad 92.76$

$$
P \Delta G E-12
$$

STATE [F ARKANSAS
STATE FICHhAY DFPI.
P.O.EПX \ll 6 l

IITTLE RCCK ARKANSAS

BILL AUDIT NO MONTHS ACCOUNTACCTG DEPT NODATE MADE -SA- GO904518

\square

APPENDIX C

REGIONAL COST FINDINGS

MEAN INSTALLATION COSTS FOR ACTIVE MOTORIST WARNING DEVICES BY REGION
(Numbers in thousands of dollars)

REGION	cost				
	TOTAL	PRE-ENGINEERING	LABOR	MATERIAL	EQUIPMENT
Flashing Lights					
1	21.1	0.9	7.1	11.8	1.1
2	18.9	1.1	5.2	11.9	1.0
3	24.7	0.8	7.5	14.5	0.6
4	22.3	1.2	7.8	12.5	0.8
5	34.5	1.2	11.3	19.9	1. 2

Cantilevered Flashing Lights

1	25.5	0.8	7.1	14.6	1.1
2	31.1	1.6	9.2	20.4	1.5
3	27.9	0.8	8.2	16.4	0.7
4	29.3	0.9	7.6	19.2	0.7
5	46.6	1.1	14.8	28.7	2.2

Flashing Lights with Gates

1	39.7	1.4	12.5	29.5	1.6
2	41.1	1.7	10.9	25.1	1.7
3	47.9	1.2	12.3	29.7	1.8
4	36.0	1.0	8.3	24.3	1.4
5	33.7	0.6	8.3	21.8	1.6

Cantilevered Flashing Lights with Gates

1	53.1	2.3	14.4	30.5	2.2
2	43.4	1.9	9.9	27.7	2.1
3	48.5	1.2	13.9	30.9	1.5
4	46.4	0.8	10.4	32.2	1.3
5	48.2	0.8	10.5	32.1	2.3

AVERAGE ANNUAL AND 30-YEAR MAINTENANCE COSTS BY REGION, data source and motorist warning device

APPENDIX D

For the analysis of small samples when the population variance is unknown, the t-statistic may be used to set confidence intervals about the sample mean. This assumes that the sample is derived from a population which is normally or near-normally distributed.

The t-statistic may be written as:

$$
t=\frac{\bar{x}-m}{s / \sqrt{n}}
$$

Where
$\overline{\mathrm{x}}=$ sample mean
$\mathrm{m}=$ population mean
$s=s t a n d a r d$ deviation of the sample
$\mathrm{n}=$ sample size

By knowing the distribution of this statistic, a confidence interval on m can be calculated by using the following steps:

1. Write an appropriate probability statement.

$$
p\left[-t_{\alpha / 2, n-1} \leq \frac{\bar{x}-m}{s / \sqrt{n}} \leq+t_{\alpha / 2, n-1}\right]=1-\alpha
$$

Where
$1-\alpha=$ level of confidence required
n - l = degrees of freedom
2. Isolate the parameter of interest.
$p\left[\overline{\mathbf{x}}-\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1} \leq m \leq \dot{\bar{x}}+\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1}\right]=1-\alpha$
3. Substitute in the inequality the observed value of the sample statistics, $\overline{\mathbf{x}}$ and s. The ($1-\alpha$) 100 percent two-sided confidence interval on m is then
$\bar{x}-\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1}$ to $\bar{x}+\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1}$

As an example, refer to the data below. These data represent the total initial costs of 24 projects involving the installation of flashing lights and gates with motion sensor train detection devices.

33,388	33,303	$\bar{x}=\$ 32,266$
39,025	39,874	$s=7325,4$
32,532	22,573	$n=24$
30,048	30,994	
31,292	27,046	
31,455	24,974	
26,630	29,886	
29,267	27,144	
53,536	31,072	
51392	31,400	
28,502	27,332	
31,862	27,942	

Then, a 95 percent confidence interval on the mean would be:

$$
32,266-\frac{7325.4}{\sqrt{24}} t_{0.025,23} \leq \overline{\bar{x}} \leq 32,266+\frac{7325.4}{\sqrt{24}} t_{0.025,23}
$$

From standard statistical tables, $t_{0.025,23}=2.069$
Therefore, the 95 percent confidence interval is:

$$
32,266 \pm 3,094 \text { or } 29,172 \leq \bar{x} \leq 35,360
$$

This interval may be calculated for any desired level of confidence.

APPENDIX E BIBLIOGRAPHY

American National Standards Institute, "Manual on Uniform Traftic Control Devices," Report No. D 6.l-1978, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., 1978.
Association of American Railroads, "Railroad-Highway Grade Crossing Protection," American Railway Signaling Principles and Practices, Chapter 23, 1962.
Association of American Railroads, Economics and Finance Department, "Indexes of Railroad Material Prices and Wage Rates," Series Q-MPW, July 26, 1978.
California public Utilities Commission, The Effectiveness of Automatic Protection in Reducing Accident Frequency and Severity at Public Grade Crossings in California, San Francisco, California, June 30, 1974.

Hitz, J.S. ed., "Summary Statistics of the National RailroadHighway Crossing Inventory for Public At-Grade Crossings," Report No. FRA-OPPD-78-20, U.S. Department of Transportation, Transportation Systems Center, Cambridge, Massachusetts, 1978.

Mengert, P., "Rail-Highway Crossing Hazard Prediction Research Results," Report No. FRA-RRS-80-02, U.S. Department of Transportation, Research and Special Programs Administration, Cambridge, Massachusetts, March 1980.
Railway Progress Institute, "Rail-Highway Grade Crossing Warning Systems-Equipment and Application," 1977.
Texas Transportation Institute, Railroad-Highway Grade crossing Handbook, Report No. FHWA-TS-78-214, U.S. Department of Transportation, Federal Highway Administration, College Station, Texas, August 1978.

號

APPENDIX F

REPORT OF NEW TECHNOLOGY

This report describes the results of a study designed to collect, analyze, and document life cycle costs of rail-highway crossing warning systems. Costs were analyzed by components consisting of pre-engineering, labor, material, equipment rental costs, and maintenance costs. Factors contributing to cost variability were identified and quantified. While no new inventions have resulted from this work, important new information about these life cycle costs have been obtained. The new findings include:

1. Thirty-year maintenance costs discounted to present value were found to be between 53 percent and 61 percent of the total installation costs.
2. More reliable installation cost data for flashing lights and automatic gates were determined.
3. No consistant regional variation in costs was found.
4. Average costs of warning systems increased with the number of tracks.
5. A hierarchy of train detection systems was established with respect to costs.

These results will be used by Federal, state, and railroad planners involved in the application of grade crossing warning equipment to improve rail-highway crossing safety.

[^0]: $l_{\text {Mengert, }}$ P., "Rail-Highway Crossing Hazard Prediction Research Results", Report No. FRA-RRS-80-02, U.S. Department of Transportation, Research and Special Programs Administration, Cambridge, Massachusetts, March, 1980.

[^1]: ${ }^{1}$ Effective January 29, 1980, the five FRA regions were restructured. There are currently eight FRA regions.

[^2]: $1_{\text {Texas }}$ Transportation Institute, Railroad-Highway Grade Crossing Handbook, Report No. FHWA-TS-78-214, U.S. Department of Transportation, Federal Highway Administration, College Station, Texas, August 1978.

[^3]: laverage annual maintenance costs, in 1977 dollars, were distributed over the service life of the motorist warning devices using the method outlined in Circular $A-94$, Revised, of the Office of Management and Budget (OMB). As recommended, a lo percent discount rate was used.
 ${ }^{2}$ Current dollars throughout this report were determined by utilizing the $A A R$ Quarterly Materials Prices and Wages Index. The most recent quarterly index available was December 1977 (dated July 26, l978). Therefore, all costs are presented in 1977 dollars.

[^4]: FIGURE 2-1. MAP OF FEDERAL RAILROAD ADMINISTRATION REGIONS

[^5]: $1_{\text {Association }}$ of American Railroads, "Railroad-Highway Grade Crossing Protection," American Railway Signaling Principles and practices, Chapter 23, 1962.

[^6]: ${ }^{1}$ Virginia, North Carolina, florida, and Iowa contribute 50 percent of the indicated maintenance costs. Wisconsin contributes 25 percent and California 100 percent. ${ }^{2}$ These sources provided data on actual maintenance costs. The other sources provided data on negotiated costs of maintenance.

[^7]: $\mathrm{l}_{\text {Hostetepler }}$ E., Depreciation Branch, Interstate Commerce Commission, Washington, D.C.
 ${ }^{2}$ Ibid.

[^8]: ${ }^{1}$ California Public Utilities Commission, The Effectiveness of Automatic Protection in Reducing Accident Frequency and Severity at Public Grade Crossings in California, San Francisco, California, June 30 , $1974, ~ p .130$.

